Senin, 27 April 2015

Penerapan Radiasi Benda Hitam

1.Gejala Pemanasan Global ( Efek Rumah Kaca )
Salah satu penyebab dari pemanasan global adala efek rumah kaca , efek rumah kaca ini sendiri telah menyebabkan suhu di bumi rata-rata 1 derajat celcius sampai 5 derajat celcius . Analogi sederhana kita menggambarkan efek rumah kaca adalah ketika kita memarkir mobil ditempat parkir mobil terbuka pada siang hari . ketika kita kembali kemobil pada sore hari , biasanya suhu didalam mobil lebih panas daripada suhu diluar . penyebabnya adalah perbedaan panjang gelombang sinar matahari yang memasuki mobil dan energi panas yang dilepaskan kembali

2. Mengukur Suhu Matahari



Suhu permukaan matahari atau bintang dapat ditentukan dengan mengukur daya radiasi matahari yang diterima bumi. Dengan menggunakan hukum Stefan-Boltzmann, total daya yang dipancarkan oleh matahari adalah:

PM = I.A
Jika diketahui: 
. σ . TM4
= luas permukaan matahari = 4πRM
= 1
maka :    PM = e . σ . TM44πRM

Matahari memancarkan daya yang sama ke segala arah. Dengan demikian bumi hanya menyerap sebagian kecil, yaitu:

Keterangan:
PM daya yang dipancarkan matahari (watt)
TM suhu permukaan matahari (K)
RM : jari – jari matahari (m)
σTM4 : laju radiasi matahari (watt/m2)
Pabs : daya yang diserap bumi (watt)
R : jari-jari bumi (m)
D :jarak matahari ke bumi (m)

Meskipun bumi hanya menyerap sebagian daya dari matahari, namun bumi mampu memancarkan daya ke segala arah. Besar daya yang dipancarkan bumi adalah:

 Keterangan:
Pemt : daya yang dipancarkan bumi (watt)
TB : suhu permukaan bumi (K)

Misalnya bumi berada dalam kesetimbangan termal maka daya yang diserap bumi sama dengan daya yang dipancarkan. Dengan demikian suhu permukaan matahari adalah:

3. Radiasi Energi yang Dipancarkan Manusia

Penerapan radiasi benda hitam juga dapat diterapkan pada benda-benda yang tidak berada dalam kesetimbangan radiasi. Sebagian besar energi manusia diradiasikan dalam bentuk radiasi elektromagnetik, khususnya inframerah. Untuk dapat memancarkan suatu energi, tubuh manusia harus menyerap energi dari lingkungan sekitarnya. Total energi yang dipancarkan oleh manusia adalah selisih antara energi yang diserap dengan energi yang dipancarkan.
PT = Ppancar – Pserap

Dengan memasukkan hukum Stefan-Boltzmann diperoleh totalenergi yang dipancarkan manusia sebagai berikut.

PT = σAe(T4 – To4)

INTENSITAS RADIASI ( Teori Max Planck )

Teori Wien cocok dengan spektrum radaisi benda hitam untuk panjang gelombang yang pendek, dan menyimpang untuk panjang gelombang yang panjang. Teori Rayleigh- Jeans cocok dengan spektrum radiasi benda hitam untuk panjang gelombnag yang panjang, dan menyimpang untuk panjang gelombang yang pendek. Jelas bahwa fisika klasik gagal menjelaskan tentang radiasi benda hitam. Inilah dilema fisika klasik di mana Max Planck mencurahkan seluruh perhatiannya.



Teori spektrum radiasi benda hitam Rayleigh dan Jeans yang meramalkan intensitas yang tinggi pada panjang gelombang rendah (atau dikenal dengan ramalan bencana ultraungu). Ramalan bencana ultraungu dapat dipecahkan oleh teori Planck yang menganggap bahwa radiasi elektromagnetik dapat merambat hanya dalam paket-paket atau kuanta. 
Pada tahun 1900 Max Planck mengemukakan teorinya tentang radiasi benda hitam yang sesuai dengan hasil eksperimen. Planck menganggap bahwa gelombang elektromagnetik berperilaku sebagai osilator di rongga. Getaran yang ditimbulkan osilator kemudian diserap dandipancarkan kembali oleh atom-atom. Planck sampai pada kesimpulan bahwa energy yang dipancarkan dan diserap tidaklah kontinu. Tetapi, energi dipancarkan dan diserap dalam bentuk paket-paket energi diskret yang disebut kuanta. 
Dengan hipotesanya, Planck berhasil menemukan suatu persamaan matematika untuk radiasi benda hitam yang benar-benar sesuai dengan data hasil eksperimennya. Persamaan Planck tersebut kemudian disebut hukum radiasi benda hitam Planck. Ia berpendapat bahwa ukuran energi kuantum (foton) sebanding dengan frekuensi radiasinya


INTENSITAS RADIASI (Perumusan Rayleigh dan Jeans)

    Perumusan Rayleigh dan JeansKurva yang didapatkan dari percobaan sebelumnya merupakan hasil yang empiris, yakni diperoleh dan disimpulkan sebagai hasil pengamatan atau percobaan.Pada masa itu para ilmuwan mencoba mencari penjelasan atas kenyataan empiris tersebut.

Pada masa tersebut pula dua ilmuwan, yakni Lord Rayleigh (1842-1919) dan Sir James Hopward Jeans (1877-1946) mencoba menggunakan teori kinetik gas dalam fisika klasik untuk mengolah hasil empiris tersebut.Menurut fisika klasik mengenai ekuipartisi energi, energi rata-rata setiap derajat kebebasan pada suhu T adalah ½ kT. Maka energi total untuk setiap getaran gelombang menjadi kT, dengan k adalah tetapan Stefan-Boltzmann.

Meskipun mustahil untuk dapat menghitung besarnya kecepatan setiap partikel gas dalam suatu ruang, teori maxwell dapat mengaitkan kecepatan setiap partikel tersebut terhadap banyaknya partikel di dalam suatu kotak dan dijabarkan melalui kurva distribusi Maxwell. Disini Rayleigh-Jeans melihat bahwa kurva yang dijabarkan oleh maxwell serupa dengan hasil yang diperoleh pada intensitas spektrum radiasi kalor Karena sebaran energi kinetik diwakili oleh sebaran kecepatan karena energi kinetik dapat dinyatakan dalam kecepatan.

Oleh karena itu mereka beranggapan bahwa ada kemiripan antara sifat panas benda dan radiasi kalor.Berdasarkan prinsip ekuipartisi energi, persaman matematis yang didapatkan oleh Rayleigh dan Jeans menunjukkan bahwa untuk l yang membesar, intensitas akan semakin kecil dan jika lmendekati tak hingga maka intensitas akan mendekati nol. Hal ini sesuai dengan hasil empiris untuk l yang besar. Akan tetapi hasil matematis yang didapatkan mereka untuk l yang mengecil, intensitas akan membesar. Bahkan intensitas akan menuju tak hingga jika l mendekati nol. Hal ini sangat menyimpang dari hasil empiris yang menunjukkan bahwa intensitas akan mendekati nol jika l mengecil.

Penyimpangan persamaan Rayleigh-Jeans yang sangat jauh ini selanjutnya diberi istilah katastropi ultraviolet karena l yang kecil berada dalam wilayah panjang gelombang ultraviolet. Hal tersebut disebabkan mereka beranggapan bahwa energi yang dimiliki oleh setiap spektrum gelombang bersifat kotinu. Artinya, energi gelombang dapat memiliki sembarang nilai dalam batas yang ditentukan. Sehingga didapatkan nilai energi yang mungkin dengan jumlah yang tak terhingga. Dan anggapan tersebut menghasilkan suatu fungsi yang mengakibatkan ketidaksesuaian dengan hasil eksperimen pada panjang gelombang pendek.

Hukum Pergeseran Wien

Bila suhu benda terus ditingkatkan, intensitas relative dari spectrum cahaya yang dipancarkan berubah. Ini menyebabkan pergeseran dalam warna-warna spectrum yang diamati , yang dapat digunakan untuk menaksir suhu suatu benda seperti pada gambar 





Gambar diatas menunjukkan grafik antara intensitas radiasi yang dipancarkan oleh suatu benda hitam terhadap panjang gelombang (grafik I –l)  pada berbagai suhu Total energi kalor radiasi yang dipancarkan adalah sebanding dengan luas di bawag grafik. Tampak bahwa total energi kalor radiasi radiasi meningkat dengan meningkatnya suhu  (menurut hokum Stefan- Bolztman. Energi kalor sebanding dengan pangkat empat suhu mutlak.

Radiasi kalor muncul sebanding suatau spectra kontinu, bukan spectra diskret seperti garis-garis terang yang dilihat dalam spectra nyala api. Atau garis-garis gelap yang dapat dilihat dalam cahaya matahari (garis Fraunhofer) (Spektra adalah bentuk tunggal spectrum) Sebagai gantinya, semua panjang gelombang hadir dalam distribusi energi kalor yang luas ini.  Jika suhu bendahitam meningkat, panjang gelombang untuk intensitas maksimum (lm) bergeser ke nilai panjang gelombang yang lebih pendek.
Pengukuran spectra benda hitam menunjukkan bahwa panjang gelombang untuyk intensitas maksimum (lm) berkurang dengan meningkatnya suhu

INTENSITAS RADIASI ( Hukum Stefan-Boltzmann )

Pada tahun 1879 seorang ahli fisika dari Austria, Josef Stefan melakukan eksperimen untuk mengetahui karakter universal dari radiasi benda hitam. Ia menemukan bahwa daya total per satuan luas yang dipancarkan pada semua frekuensi oleh suatu benda hitam panas (intensitas total) adalah sebanding dengan pangkat empat dari suhu mutlaknya. 

Dengan menyatakan intensitas radiasi pada permukaan benda hitam pada semua frekuensi, adalah suhu mutlak benda, dan σ adalah tetapan Stefan-Boltzman, yang bernilai 5,67 × 10-8 Wm-2K- 4 . Gambar berikut memperlihatkan spektrum cahaya yang dipancarkan benda hitam sempurna pada beberapa suhu yang berbeda. Grafik tersebut memperlihatkan bahwa antara antara panjang gelombang yang diradiasikan dengan suhu benda memiliki hubunganyang sangat rumit.




Beberapa tahun kemudian, berdasarkan teori gelombang elektromagnetik cahaya, Ludwig Boltzmann (1844 –  1906) secara teoritis menurunkan hukum yang diungkapkan oleh Joseph Stefan (1853 – 1893) dari gabungan termodinamika dan persamaan-persamaan Maxwell .     Oleh karena itu, persamaan diatas dikenal juga sebagai Hukum Stefan-Boltzmann, yang berbunyi:

“Jumlah energi yang dipancarkan per satuan permukaan sebuah benda hitam dalam satuan waktu akan berbanding lurus dengan pangkat empat temperatur termodinamikanya”.

Minggu, 26 April 2015

APA SIH RADIASI BENDA HITAM ITU ?

Telah diektahui bahwa perpindahan kalor ( panas )  dari Matahari ke Bumi melalui gelombang elektromagnetik  terjadi secara radiasi ( pancaran ). Dalam Materi ini akan dijelaskan intensitas radiasi benda hitam yang melibatkan : Gustav Kirchhoff, Stefan dan Boltzmann, Wilhelm Wien, Rayleigh dan Jeans, dan Max Planck.
Pertanda pertama yang menunjukkan bahwa gambaran gelombang klasik tentang radiasi electromagnet  ( yang berhasil baik menerangkan perobaan Young dan Hertz pada abad ke Sembilan belas dan yang dapat dianalisis secara tepat dengan persamaan Maxwell ) tidak seluruhnya benar, tersimpulkan dari kegagalan teori gelombang untuk menerangkan spectrumradiasi termal yang diamati jenis radiasi electromagnet yang dipancarkan berbagai benda semata-mata karena suhunya . 
Teori gelombang juga ternyata aggal menerangkan hasil percobaan lain yang segera menyusul, seperti percobaan yang memepelajari pemancaran electron dari eprmukaan logam yang disinari cahaya ( efek fotolistrik ), dan ahmburan cahaya oleh electron-elektron ( efek Compton ).

Radiasi panas adalah radiasi yang dipancarkan oleh sebuah benda sebagai akibat suhunya. Setiap benda memancarkan radiasi panas, tetapi pada umumnya, Anda dapat melihat sebuah benda, karena benda itu memantulkan cahaya yang datang padanya, bukan karena benda itu memancarkan radiasi panas. Benda baru terlihat karena meradiasikan panas jika suhunya melebihi 1.000 K. Pada suhu ini benda mulai berpijar merah seperti kumparan pemanas sebuah kompor listrik. Pada suhu di atas 2.000 K benda berpijar kuning atau keputih-putihan, seperti pijar putih dari filamen lampu pijar. Begitu suhu benda terus ditingkatkan, intensitas relatif dari spektrum cahaya yang dipancarkannya berubah. Hal ini menyebabkan pergeseran warna-warna spektrum yang diamati , yang dapat digunakan untuk menentukan suhu suatu benda. Secara umum bentuk terperinci dari      spektrum radiasi panas yang dipancarkan oleh suatu benda panas bergantung pada komposisi benda itu. Walaupun demikian, hasil eksperimen menunjukkan bahwa ada satu kelas benda panas yang memancarkan spektra panas dengan karakter universal. Benda ini adalah benda hitam atau black body. Benda hitam didefinisikan sebagai sebuah benda yang menyerap semua radiasi yang datang padanya. Dengan kata lain, tidak ada radiasi yang dipantulkan keluar dari benda hitam. Jadi, benda hitam mempunyai harga absorptansi dan emisivitas yang besarnya sama dengan satu. Seperti yang telah Anda ketahui bahwa emisivitas (daya pancar)  merupakan  karakteristik suatu materi , yang  menunjukkan perbandingan daya  yang dipancarkan per  satuan luas oleh suatu permukaan terhadap daya yang dipancarkan benda hitam pada temperatur yangsama. Sementara itu, absorptansi (daya serap) merupakan perbandingan fluks pancaran atau fluks cahaya yang diserap oleh suatu benda terhadap fluks yang tiba pada benda itu.


Gambar 1 Pemantulan yang terjadi pada benda hitam.

Benda hitam ideal digambarkan oleh suatu rongga hitam dengan lubang kecil. Sekali suatu cahaya memasuki rongga itu melalui lubang tersebut, berkas itu akan dipantulkan berkali-kali di dalam rongga tanpa sempat keluar lagi dari lubang tadi. Setiap kali dipantulkan, sinar akan diserap dinding-dinding berwarna hitam . Benda hitam akan menyerap cahaya sekitarnya jika suhunya lebih rendah daripada suhu sekitarnya dan akan memancarkan cahaya ke sekitarnya jika suhunya lebih tinggi daripada suhu sekitarnya. Benda hitam yang dipanasi sampai suhu yang cukup tinggi akan tampak membara.
Radiasi benda hitam adalah radiasi elektromagnetik yang dipancarkan oleh sebuah benda hitam. Radiasi ini menjangkau seluruh daerah panjang gelombang. Distribusi energi pada daerah panjang gelombang ini memiliki ciri khusus, yaitu suatu nilai maksimum pada panjang gelombang tertentu. Letak nilai maksimum tergantung pada temperatur, yang akan bergeser ke arah panjang gelombang pendek seiring dengan meningkatnya temperatur.


Praktek 1 Fisika Radiasi Benda Hitam

Bahaya Radiasi !

Praktikum Radiasi Benda HItam

Siklus Rankine Dengan Pemanasan Ulang

Dalam siklus ini, dua turbin bekerja secara bergantian. Yang pertama menerima uap dari boiler pada tekanan tinggi. Setelah uap melalui turbin pertama, uap akan masuk ke boiler dan dipanaskan ulang sebelum memasuki turbin kedua, yang bertekanan lebih rendah. Manfaat yang bisa didapatkan diantaranya mencegah uap berkondensasi selama ekspansi yang bisa mengakibatkan kerusakan turbin, dan meningkatkan efisiensi turbin.

Siklus Rankine regeneratif
Konsepnya hampir sama seperti konsep pemanasan ulang. Yang membedakannya adalah uap yang telah melewati turbin kedua dan kondenser akan bercampur dengan sebagian uap yang belum melewati turbin kedua. Pencampuran terjadi dalam tekanan yang sama dan mengakibatkan pencampuran temperatur. Hal ini akan mengefisiensikan pemanasan primer.
Siklus Rankine Organik menggunakan fluida organik seperti n-pentana atau toluene menggantikan air dan uap. Penggunaan kedua jenis fluida tersebut akan mengurangi suplai panas yang dibutuhkan karena rendahnya titik didih dari kedua jenis fluida tersebut sehinggaenergi matahari sudah cukup untuk mengubah fase fluida tersebut. Meski efisiensi Carnot akan berkurang, namun pengumpulan panas yang dilakukan pada temperatur rendah akan mengurangi banya biaya operasional.
Siklus Rankine sesungguhnya tidak membatasi fluida jenis apa yang digunakan karena pada dasarny siklus Rankine adalah mesin kalor sehingga efisiensinya dihitung berdasarkan efisiensi Carnot. Konsepnya tidak boleh dipisahkan dengan siklus termodinamika.

Siklus Rankine Ideal Sederhana
Siklus Rankine ideal sederhana terdiri dari :
1. Boiler sebagai alat pembangkit uap
2. Turbin uap sebagai alat mengubah uap menjadi kerja
3. Kondensor sebagai alat pengembun uap
4. Pompa boiler sebagai alat memompa air ke boiler
Skema siklus Rankine ideal sederhana dapat dilihat pada gambar 5 berikut ini.

Gambar 5 skema siklus Rankine ideal sederhana

Skema pada gambar 5 dapat digambarkan garis kerjanya pada diagram T-s seperti pada gambar 6 berikut ini.


Gambar 6 diagram T-s untuk siklus Rankine ideal sederhana

Keterangan gambar 6 :
Proses 1 – 2 adalah proses pada tekanan konstan yang berlangsung pada boiler Pada proses ini kalor masuk ke dalam sistem (Qin).
Proses 2 – 3 adalah proses ekspansi isentropis (adiabatis reversibel) yang berlangsung di dalam turbin uap. Pada proses ini terjadi kerja keluar sistem (Wout)
Proses 3 – 4 adalah proses pada tekanan konstan yang berlangsung di dalam kondensor. Pada proses ini kalor keluar dari sistem (pembuang kalor) (Qout).
Proses 4 – 1 adalah proses penekanan secara isentropis oleh pompa. Pada proses ini kerja masuk ke dalam sistem (Win).

Pada siklus Rankine ideal sederhana. Air dipompa oleh pompa pengisi boiler ke dalam boiler. Pompa yang bertugas untuk memompakan air ke dalam boiler disebut feed water pump. Pompa ini harus dapat menekan air ke boiler dengan tekanan yang cukup tinggi (sesuai dengan tekanan kerja siklus). Secara ideal pompa bekerja menurut proses isentropis (adiabatis reversibel) dan secara aktual pompa bekerja menurut proses adiabatis irreversibel.
Di dalam boiler, air yang bertekanan tinggi dipanaskan hingga menjadi uap panas lanjut, prosesnya adalah sebagai berikut:

1. Ekonomiser, air pertama-tama masuk ke ekonomiser. Ekonomier berfungsi sebagai pemanas awal. Sesuai namanya alat ini berfungsi untuk meningkatkan efisiensi boiler dengan cara menggunakan panas sisa gas buang untuk memanaskan awal air yang masuk ke boiler.
2. Evaporator, dari ekonomiser, air masuk ke drum penampung air di evaporator. Di dalam evaporator air dipanaskan melalui pipa-pipa evaporasi hingga berubah menjadi uap. Uap air yang keluar dari evaporator adalah uap jenuh.
3. Superheater, selanjutnya uap jenuh dari evaporator masuk ke superheater. Superheater adalah alat penukar kalor yang dirancang khusus untuk memanaskan uap jenuh menjadi uap panas lanjut dengan menggunakan gas panas hasil pembakaran. Uap panas lanjut yang keluar dari superheater siap digunakan untuk memutar turbin uap.

Uap panas lanjut dari boiler kemudian dialirkan ke turbin uap melalui pipa – pipa uap. Di dalam turbin uap , uap panas lanjut diekspansikan dan digunakan untuk memutar rotor turbin uap. Proses ekspansi di dalam turbin uap berlangsung melalui beberapa tahap yaitu :
1. Proses ekspansi awal di dalam turbin tekanan tinggi (roda Curtis)
Uap panas lanjut yang bertekanan tinggi diekspansikan di nosel dan kemudian digunakan untuk memutar roda Curtis. Roda Curtis adalah turbin uap jenis turbin implus. Pada roda Curtis terjadi penurunan tekanan yang signifikan.
2. Proses ekspansi pada turbin tingkat menengah.
Turbin tingkat menengah menggunakan turbin jenis reaksi dan tersusun atas beberapa tingkat turbin.
3. Proses ekspansi tingkat akhir.
Pada tingkat akhir ini uap terus diekspansikan hingga tekanan sangat rendah (biasanya dibawah tekanan atmosfir ) dengan bantuan kondensor.

Putaran poros yang dihasilkan dari proses ekspansi uap panas lanjut di dalam turbin digunakan untuk memutar beban. Beban dapat berupa generator listrik seperti di PLTU atau propeler (baling-baling) untuk menggerak kapal.
Uap tekanan rendah dari turbin uap mengalir ke kondensor. Di dalam kondensor, uap didinginkan dengan media pendingin air hingga berubah fase menjadi air. Kemudian air ditampung di dalam tangki dan dipisahkan dari gas-gas yang tersisa dan siap untuk dipompa ke dalam boiler oleh pompa pengisi boiler.Proses ini terus berlanjut dan berulang membentuk sebuah siklus yang disebut siklus Rankine. Pada siklus Rankine ideal, Ke 4 alat dianggap bekerja pada kondisi Steady flow

Siklus Pemanasan Ulang Peningkatan efisiensi dapat pula dicapai dengan mempergunakan proses pemanasan ulang. Turbin uap tebagi dua bagian, yaitu bagian Tekanan Tinggi (TT) dan bagian Tekanan Rendah (TR). Uap yang telah dipakai pada taraf pertama meninggalkan bagian TT pada titik 3 dan dialirkan kembali ke boiler untuk pemanasan ulang, kemudian dimasukkan kembali ke turbin pada titik 4 dan dipakai oleh bagian TR turbin uap tersebut. Luas 1-2-3-4-5-6 dari gambar 2.3b yang “mewakili” jumlah energi yang dimanfaatkan, dengan demikian menjadi lebih besar, dan daya guna atau efisiensi termal dari pusat tenaga listrik menjadi lebih besar pula. Untuk mesin-mesin yang lebih besar,  emanasan ulang dapat dilakukan hingga dua kali, dan turbin uap terbagi atas tiga bagian, yaitu bagian Tekanan Tinggi (TT), Tekanan Menengah (TM), dan Tekanan Rendah (TR). Keuntungan dari pemanasan kembali adalah untuk menghindari terjadinya korosi dan pengikisan, peningkatan kualiltas uap, peningkatan efisiensi sudu dan nosel, efisiensi panas, dan daya keluaran. Tetapi biaya yang diperlukan untuk pemanasan kembali lebih besar dibandingkan dengan keuntungan yang didapat dari peningkatan efisiensi panas, disamping itu pemeliharaan menjadi lebih banyak. 



Siklus Tenaga Uap Rankine

Siklus Rankine adalah siklus daya uap yang digunakan untuk menghitung atau memodelkan proseskerja mesin uap / turbin uap. Siklus ini bekerja dengan fluid kerja air. Semua PLTU (pembangkit listrik tenaga uap) bekerja berdasarkan prinsip kerja siklus Rankine. Siklus Rankine pertama kali dimodelkan oleh: William John Macquorn Rankine, seorang ilmuan Scotlandia dari Universitas Glasglow. 

Terdapat 4 proses dalam siklus Rankine, setiap siklus mengubah keadaan fluida (tekanan dan/atau wujud).· Proses 1: Fluida dipompa dari bertekanan rendah ke tekanan tinggi dalam bentuk cair. Proses ini membutuhkan sedikit input energi.· Proses 2: Fluida cair bertekanan tinggi masuk ke boiler di mana fluida dipanaskan hingga menjad uap pada tekanan konstan menjadi uap jenuh.· Proses 3: Uap jenuh bergerak menuju turbin, menghasilkan energi listrik. Hal ini mengurangi temperatur dan tekanan uap, dan mungkin sedikit kondensasi juga terjadi.· Proses 4: Uap basah memasuki kondenser di mana uap diembunkan dalam tekanan dan temperatur tetap hingga menjadi cairan jenuh.

Dalam siklus Rankine ideal, pompa dan turbin adalah isentropic yang berarti pompa dan turbin tidak menghasilkan entropi dan memaksimalkan output kerja. Dalam siklus Rankine yang sebenarnya, kompresi oleh pompa dan ekspansi dalam turbin tidak isentropic. Dengan kata lain, proses ini tidak bolak-balik dan entropi meningkat selama proses. Hal ini meningkatkan tenaga yang dibutuhkan oleh  pompa dan mengurangi energi yang dihasilkan oleh turbin. Secara khusus, efisiensi turbin akan dibatasi oleh terbentuknya titik-titik air selama ekspansi ke turbin akibat kondensasi. Titik-titik air ini menyerang turbin, menyebabkan erosi dan korosi mengurangi usia turbin dan efisiensi turbin. Cara termudah dalam menangani hal ini adalah dengan memanaskannya pada temperatur yang sangat tinggi.Efisiensi termodinamika bisa didapatkan dengan meningkatkan temperatur input dari siklus. 
Ada beberapa cara untuk meningkatkan efisiensi termal siklus rankine dengan memodifikasi siklusnya.

Reheater  Pada Siklus RankineCara pertama adalah dengan menggunakan dua turbin uap (High Pressure dan Low Pressure) yang keduanya berada pada satu poros. Uap air yang keluar dari turbin High Pressure masuk kembali ke boiler untuk dipanaskan kembali menjadi uap superheat. Setelah itu uap air tersebut kembali masuk ke turbin uap Low Pressure. Dari turbin kedua ini uap air masuk ke kondensor. PLTU modern sudah banyak menggunakan tiga atau bahkan 4 turbin uap, yaitu High Pressure Turbine, Intermediate Pressure Turbine, dan Low Pressure Turbine. Uap air reheater masuk kembali ke turbin intermediate pressure, selanjutnya tanpa mengalami reheater lagi uap air yang keluar dari intermediate pressure turbine masuk ke low pressure turbine
Efek Kenaikan pada Siklus Rankine





SIKLUS TENAGA UAP CARNOT

Salah satu jenis mesin refrigerasi yang umum digunakan pada zaman sekarang adalah jenis kompresi uap.  Mesin pendingin jenis ini bekerja secara mekanik dan perpindahan panas dilakukan dengan memanfaatkan sifat refrigeran yang berubah dari fase cair ke fase gas (uap) dan kembali ke fase cair secara berulang-ulang.
Refrigeran mendidih pada suhu yang jauh lebih rendah dibandingkan air pada tekanan yang sama.   Misalnya, amonia yang sering digunakan sebagai refrigeran, pada tekanan 1 atmosfir (101.3 kPa)  dapat mendidih pada suhu -33ᵒC.  Suhu titik didih refrigeran dapat diubah dengan cara mengubah  tekanannya, misalnya, untuk menaikkan suhu titik didih amonia menjadi 0 oC, tekanan harus  dinaikkan menjadi 428.5 kPa.Keragaan suatu siklus refrigerasi umumnya dinyatakan dalam berbagai terminologi, seperti ton refrigerasi, koefisien tampilan, dan efisiensi refrigerasi.  Satu ton refrigerasi didefinisikan sebagai kapasitas pendinginan yang diserap oleh satu ton es untuk menjadi cair selama 24 jam, yaitu 1357 W (200 Btu/menit) .Istilah ton refrigerasi umum digunakan untuk mesin  pendingin berkapasitas besar.

Berasal dari standar yang digunakan, yaitu panas yang diserap oleh 1 ton (2000 lb) es saat mencair selama 24 jam.  Karena panas laten pencairan es adalah 144 Btu/lb, maka panas yang diserap (2000 lb X 144 Btu/lb)/(24 jam X 60 menit) adalah 200 Btu/menit.

Siklus Carnot adalah siklus termodinamika ideal yang mampu balik,  yang pada mulanya digunakan sebagai standar terhadap kemungkinan maksimum konversi energi panas ke energi mekanik.  Dalam bentuk sebaliknya, juga digunakan sebagai standar penampilan maksimum suatu alat pendingin.  Siklus Carnot tidak mungkin diterapkan karena tidak mungkin  mendapatkan suatu siklus yang mutlak mampu-balik di alam nyata,  tetapi dapat dianggap sebagai kriteria pembatas untuk siklus-siklus lainnya.               
Siklus Carnot berlangsung dengan suatu urutan yang terdiri atas 4 proses yang mampu-balik, yaitu dua proses adiabatik dan dua proses isotermik


Jika siklus Carnot dibalik, akan diperoleh siklus yang menjadi ukuran kinerja maksimum yang mungkin diperoleh dari suatu mesin pendingin.  Dalam hal ini, kerja harus diberikan pada siklus, zat kerja dikembangkan secara adiabatik dari TH ke TC, menyerap panas pada TC dengan entropi yang meningkat darisa ke sb.  Selanjutnya, zat kerja dikempa secara adiabatik dari TC ke TH, melepas panas secara isotermal pada TH dengan entropi menurun dari sb ke sa.  Dengan demikian, siklus Carnot dapat digunakan untuk tiga tujuan yaitu:
1. mengubah energi panas menjadi energi mekanik (sebagai mesin panas)
2. menggunakan energi mekanik untuk menyerap panas dari suatu tempat dan melepaskannya di tempat yang diinginkan (sebagai pompa panas)
3. menggunakan energi mekanik untuk menyerap panas dari suatu tempat yang diinginkan dan membuangnya di tempat lain (sebagai mesin pendingin)
Tujuan (2) dan (3) didasarkan pada siklus Carnot terbalik dan berbeda hanya pada hasil akhir yang diinginkan.  Proses yang berlangsung pada siklus pendinginan dan siklus pompa panas pada prinsipnya sama dan hanya berbeda pada tujuan akhir proses.  Pada siklus pendinginan yang menjadi tujuan adalah mendapatkan suhu yang lebih rendah dari lingkungannya, sebaliknya pada siklus pompa panas yang menjadi tujuan akhir adalah memperoleh suhu yang lebih tinggi dari lingkungannya.
Penampilan mesin pendingin dan pompa panas umumnya dinyatakan dalam koefisien penampilan (coefficient of performance, COP).  Koefisien penampilan (coefficient of performance, cop) telah digunakan sebagai alat pengukur keefektifan suatu alat dan didefinisikan sebagai perbandingan antara hasil akhir yang diperoleh dengan kerja bersih yang harus diberikan. 


untuk pompa panas,


dan untuk mesin panas,


Meskipun siklus Carnot sangat efisien bekerja di antara dua sumber panas tertentu dan sangat berguna sebagai kriteria bagi siklus yang bekerja secara sempurna, terdapat kelemahan yang sangat   jelas jika gas digunakan sebagai refrigeran.  Kelemahan-kelemahan tersebut antara lain adalah :

1. Terjadinya tekanan yang sangat tinggi dan volume yang sangat besar karena kenaikan tekanan          terjadi saat berlangsungnya kompresi isentropik serta saat proses pelepasan panas secara isotermal.
2. Proses pindah panas dengan menggunakan gas, yaitu media yang mempunyai kapasitas panas   tertentu, tidak mungkin diperoleh di dalam praktek.
3. Diagram p-v siklus yang bekerja dengan menggunakan gas sangat sempit sehingga sedikit ke-tak-mampubalikan di dalam proses tertentu akan mengakibatkan peningkatan kerja yang dilakukan yang sangat besar dan merupakan bagian terbesar kerja bersih siklus tersebut.

Koefisien tampilan menyatakan keefektifan suatu sistem pendingin, yang merupakan perbandingan  antara efek pendinginan bermanfaat terhadap energi bersih yang harus disediakan dari luar untuk mendapatkan efek pendinginan tersebut.


Efisiensi refrigerasi menunjukkan kedekatan sistem atau siklus pendingin tersebut dengan siklus ideal yang mampu-balik, yaitu siklus Carnot.